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Unit 5 – Embedded Systems in PSoC 
 

EMBEDDED SYSTEM ON PSOC 
▪ Zynq-7000 PSoC devices include: 

✓ PS (Processing System): It includes an ARM microprocessor 
as well as many peripherals. 

✓ PL (Programmable Logic): This is the reconfigurable fabric.  
▪ These two units can be interconnected via the AXI (Advanced 

eXtensible Interface) Bus. 
▪ When an architecture is implemented in the PL, an AXI interface 

must be included for interconnection to the AXI Bus. An AXI 
Peripheral refers to the architecture and its AXI interface. 

 
 
 

AXI BUS 
 
References:  
▪ ZynqTM Book 
▪ AXI4 Specification 
▪ Connecting User Logic to AXI Interfaces of 

High-Performance Communication Blocks in 
the SmartFusion2 Devices – Libero SoC v11.4. 

 

AXI4-FULL INTERFACE 
▪ The AXI protocol is burst-based and defines 

five independent transaction channels. 
▪ Write Channel Architecture: Address and 

Control data is transmitted to the slave before 
a burst of data is transmitted, and a Write 
Response signaled following completion: 
✓ Write Address Channel 

✓ Write Data Channel 
✓ Write Response Channel 

▪ Read Channel Architecture: Address and 
Control data transmitted to the slave before a 
burst of read data is transmitted to the master: 
✓ Read Address Channel 
✓ Read Data Channel 

▪ Data can move in both directions 
simultaneously. 

▪ Data transfer size: up to 256 data transfers 
(burst transactions). 

▪ AXI4-Lite: One data transfer per transaction. 
Burst is not supported 

▪ AXI4-Stream: One single channel for transmission of streaming data. It can burst an unlimited amount of data. 
 

▪ Write/Read Data Channel: The data bus can be: 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide. 
▪ Burst Size: This is defined by the signals 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑆𝐼𝑍𝐸 and 𝑆_𝐴𝑋𝐼_𝐴𝑅𝑆𝐼𝑍𝐸. They can have the values 000 (1 byte), 001 

(2 bytes), 010 (4 bytes), 011 (8 bytes), and 100 (16 bytes = 128 bits).  
The Burst Size must not exceed the Data Bus Width. If the AXI Width is greater than the Burst size, the AXI interface must 
determine from the transfer address which byte lanes of data bus to use for each transfer (when writing, this can be done 
using the WSTRB signal). 
As a good rule of thumb, make the Burst Size the same as the Write/Read Data Channel. 

▪ Burst type: Defined by 𝑆_𝐴𝑋𝐼_𝐴𝑊𝐵𝑈𝑅𝑆𝑇 and 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐵𝑈𝑅𝑆𝑇. 00: FIXED (address remains constant during transaction), 

01: INCR (address increments depending on the transaction size), 10: WRAP. This is for the address inside the peripheral 
where data should be placed. It is up to the recipient of the data to implement this feature. 

▪ Burst Length: This is defined by the S_AXI_AWLEN and S_AXI_ARLEN signals. It provides the exact number of transfers 
in a burst. 1-256 (0x00 – 0xFF) for the INCR burst type. For all the other burst types, only 1-16 are supported. (It seems 
that in Zynq, burst can only be up to 16 words.) 
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▪ Signals: 
Global System Signals: 
✓ S_AXI_CLK: AXI4 clock 
✓ S_AXI_ARESETN: AXI4 active-low reset. 

 
Each of the five channels has their own set of respective signals: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
AXI4-FULL PROTOCOL 
▪ The VALID/READY handshake process is used by all five transaction channels (‘Assert and Wait’ Rule) 
▪ VALID: Generated by the source only when information (address, data, and control) is available. 
▪ READY: Generated by the destination to indicate it can accept information. 
▪ Transfer occurs on the rising clock edge when VALID=READY=1. At that moment, VALID becomes 0 followed by READY 

becoming 0. * A source is not permitted to wait until READY is asserted before asserting VALID. 
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Writing Transaction – Simple Memory: 
▪ The AXI master sends the write address (along with burst information) via the Write Address Channel. Then, it writes data 

via the Write Data Channel. Finally, the Slave send the response via the Write Response Channel. 
▪ Write Address Channel Handshake: The AXI Master asserts the AWVALID signal only when it drives valid Address and Control 

information. The signals remain asserted until the AXI Slave accepts the Address and Control information and asserts the 
associated AWREADY signal (at this moment, it captures the Address and Control). 

▪ Write Data Channel Handshake: The AXI Master asserts the WVALID signal only when it drives valid write data. The WVALID 
signal remains asserted until the AXI Slave accepts the write data by asserting the WREADY signal (this is when data is 
captured). If the burst is greater than 1, when WREADY is asserted, the AXI Master must place another data on the bus, 
assert WVALID and wait until WREADY is asserted. The process continues until all the bursts are completed (the last burst 
is signaled by WLAST). Notice that the AXI Master controls when to assert WVALID in a burst. The figure shows that after 
the first data (D(A0)), the next three data (Burst Length = 4) are issued one every clock cycle. 

▪ Write Response Channel Handshake: The AXI Slave asserts the BVALID signal only when it drives the valid response BRESP. 
This happens when the bursts have been completed. The BVALID signal remains asserted until the AXI Master asserts 
BREADY (here, the Master captures BRESP). Note that the master can assert BREADY before the slave asserts BVALID. This 
helps the completion of the operation in one cycle, as BVALID cannot be waiting on BREADY. 

▪ The figure below shows the case for a simple memory system: Data is written starting from the address provided on 
S_AXI_AWADDR. The internal circuitry is in charge of incrementing the address (if in INCR or WRAP mode). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Reading Transaction – Simple Memory: 
▪ The AXI master sends the read address (along with burst information) via the Read Address Channel. Then, the Slave sends 

Read Data Back via the Read Data Channel.  
▪ Read Address Channel Handshake: The AXI Master asserts ARVALID only when it drives valid address and control 

information. It remains asserted until the AXI slave accepts the address and control information and asserts the associated 
ARREADY signal (here is when address and control are captured). 

▪ Read Data Channel Handshake: The AXI Master asserts RVALID only when it drives the valid read data. The RVALID signal 
remains asserted until the AXI Master accepts data by asserting the RREADY signal (here data is captured). If the burst is 
greater than 1, when RREADY is asserted, the AXI Slave must place another data on the bus, assert RVALID and wait until 
RREADY is asserted. The process continues until all the bursts are completed (the last burst is signaled by RLAST). Notice 
that the AXI Slave controls when to assert RVALID in a burst. The figure shows that after the each data, we wait one cycle 
before issuing the next data. 

▪ The figure below shows the case for a simple memory system: Data is written starting from the address provided on 
S_AXI_ARADDR. The internal circuitry is in charge of incrementing the address (if in INCR or WRAP mode). 
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AXI4-LITE INTERFACE 

▪ This is a reduced version of the AXI4-Full. It does not support bursts, i.e., we only have one transaction at a time. 
▪ Data bus: 32 or 64 bits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
AXI4-LITE PROTOCOL 
▪ The AXI Master Interface provided by Zynq-7000 in Vivado sends both the Write Address and Write Data at the same time. 

When Reading, the Master first requests to read an address and the AXI Slave responds with data. 
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▪ Write cycle and Read Cycle (Xilinx AXI4-Lite, from Master’s point of view) 
✓ S_AXI_AWREADY: Registered signal asserted for one clock 

cycle when S_AXI_AWVALID=S_AXI_WVALID=‘1’ (this can 
happen immediately or after a few cycles).  

✓ S_AXI_WREADY: Registered signal that is asserted for one 
clock cycle when S_AXI_AWVALID=S_AXI_WVALID=1 (this 
can happen immediately or after a few cycles). 

✓ S_AXI_AWADDR: It is captured into 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 when 

S_AXI_AWVALID=S_WVALID=‘1’, S_AXI_AWREADY=’0’. 
✓ S_AXI_ARREADY: It is asserted for one clock cycle when 

S_AXI_RVALID is asserted (it can happen immediately or after 
a few cycles).  

✓ S_AXI_ARADDR: It is captured into the 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 signal when 

S_AXI_ARVALID =’1’ and S_AXI_ARREADY=’0’. 
✓ S_AXI_RVALID: It is asserted for one clock cycle right after 

both S_AXI_ARVALID and S_AXI_ARREADY are detected to be 
‘1’. During that clock cycle, S_AXI_RREADY is still ‘1’ (due to 
the AXI specification), so when S_AXI_RVALID becomes zero, 
S_AXI_RREADY follows suit and becomes zero. 
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AXI4 INTERFACE TEMPLATES 

▪ AXI4-Lite Interface (Slave): Vivado 2019.1 provides a template based on the number of Slave Registers that the user specifies 

(4 by default). The template on its own can be used to write data on Slave Registers and read data from them in order to 
verify the functioning of the embedded system. In our examples, we need to modify the template to include our hardware. 

▪ AXI4-Full Interface (Slave): Vivado 2019.1 provides a template based on the number of bytes selected (64 by default). The 
template includes an AXI4-Full Interface for a 64-bytes memory where we can read and write data using bursts. This interface  
needs to be modified by including our hardware and/or modifying the interface itself. 

▪ The source files of the examples provided here can be downloaded at: Tutorial: Embedded System Design for Zynq PSoC. 
 

AXI4-LITE INTERFACE - EXAMPLES 
 

AXI4-LITE: PIXEL PROCESSOR  

▪ Custom Hardware Peripheral: Pixel Processor (NI=8, NO=8, NC=4). 

✓ Operation: This is a combinational circuit that that generates output data as soon as input data is present. 

 
▪ AXI4-Lite Interface: 

✓ Simple interface with two slave registers (for reading and writing): 

 Slave Register 0: Master writes data on the Slave Peripheral. Here, axi_awaddr(3..2) = 00. 

 Slave Register 1: Master reads data from the Slave Peripheral. Here, axi_awaddr(3..2) = 01. 

✓ 𝑠𝑙𝑣_𝑟𝑒𝑔_𝑤𝑟𝑒𝑛: It indicates that new data is available on a Slave Register. 

𝑠𝑙𝑣_𝑟𝑒𝑔_𝑤𝑟𝑒𝑛 =  𝑆_𝐴𝑋𝐼_𝑊𝑅𝐸𝐴𝐷𝑌 𝑎𝑛𝑑 𝑆_𝐴𝑋𝐼_𝑊𝑉𝐴𝐿𝐼𝐷 𝑎𝑛𝑑 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑅𝐸𝐴𝐷𝑌 𝑎𝑛𝑑 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑉𝐴𝐿𝐼𝐷. This signal is pulse 

with a duration of one clock cycle. It indicates that data is available on the input that will be captured on a Slave Register. 
✓ 𝑠𝑙𝑣_𝑟𝑒𝑔_𝑟𝑑𝑒𝑛: It indicates that the Master (e.g.: the processor) is requesting to read from a Slave Register. 

𝑠𝑙𝑣_𝑟𝑒𝑔_𝑟𝑑𝑒𝑛 =  𝑆_𝐴𝑋𝐼_𝐴𝑅𝑅𝐸𝐴𝐷𝑌 𝑎𝑛𝑑 𝑆_𝐴𝑋𝐼_𝐴𝑅𝑉𝐴𝐿𝐼𝐷 𝑎𝑛𝑑 (𝑛𝑜𝑡 𝑆_𝐴𝑋𝐼_𝑅𝑉𝐴𝐿𝐼𝐷). 
✓ 𝑎𝑥𝑖_𝑎𝑤_𝑎𝑑𝑑𝑟: Latched address (from 𝑆_𝐴𝑋𝐼_𝐴𝑊𝐴𝐷𝐷𝑅) that specifies a Slave Register. In the example, we have 4-bit 

addresses, where each address specifies a particular byte. This is, the 2 LSBs indicate individual bytes within a 32-bit 
word. As a Slave Register is 32-bits wide, we only need 𝑎𝑥𝑖_𝑎𝑤_𝑎𝑑𝑑𝑟(3. .2) to specify a particular slave register. 

✓ 𝑎𝑥𝑖_𝑎𝑟_𝑎𝑑𝑑𝑟: Latched address (from 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐴𝐷𝐷𝑅) that specifies a Slave Register. In the example, we have 4-bit 

addresses, where each address specifies a particular byte. This is, the 2 LSBs indicate individual bytes within a 32-bit 
word. As a Slave Register is 32-bits wide, we only need 𝑎𝑥𝑖_𝑎𝑟_𝑎𝑑𝑑𝑟(3. .2) to specify a particular slave register. 

✓ Data is written (from processor to our peripheral) on a Slave Register specified by 𝑎𝑥𝑖_𝑎𝑤_𝑎𝑑𝑑𝑟(3. .2) when 
𝑠𝑙𝑣_𝑟𝑒𝑔_𝑤𝑟𝑒𝑛 = 1. Also, data is read from a Slave register specified by 𝑎𝑥𝑖_𝑎𝑟_𝑎𝑑𝑑𝑟(3. .2) when 𝑠𝑙𝑣_𝑟𝑒𝑔_𝑟𝑑𝑒𝑛 = 1.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

✓ Address (𝑆_𝐴𝑋𝐼_𝐴𝑊𝐴𝐷𝐷𝑅, 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐴𝐷𝐷𝑅): In this example, we selected only two registers, but Vivado 2019.1 creates 

a template with a minimum of four 32-bit registers. So, we have 16 bytes, hence the 4 bit addresses, from which we 
only use the 2 MSBs to identify the 32-bit Slave Registers: Register 0 is given the 00 code, and Register 1 the 01 code. 

 
▪ Software routine: It writes one 32-bit word, and then reads one 32-bit word. 
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AXI4-LITE: SEQUENTIAL (OR ITERATIVE) DIVIDER 

▪ Custom Hardware Peripheral: Iterative Integer Divider (N=16, M=16). 

✓ Operation: The circuit reads input data (16-bit A, 16-bit B) when the s signal (usually a one-cycle pulse) is asserted. 

When the result (16-bit Q, 16-bit R) is ready (after N+1=17 cycles), the signal done is asserted. Only after this, we can 

feed a new input data set (with s = 1). Note that this is how iterative circuits work. 

 
▪ AXI4-Lite Interface: 

✓ Simple interface with 3 Slave Registers (for reading and writing), a Register, and an FSM. 
 Slave Register 0: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  00. 
 Slave Register 1: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  01. 

 Slave Register 2: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  10 

✓ When using Slave Registers we need to consider 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 and 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 to identify the registers to/from we 

write/read. We use the signal slv_reg_wren to determine whether data is present on Slave Register 0. But note that data 

is present on Slave Register 0 one cycle after slv_reg_wren. 

✓ Slave Registers 1 and 2: No need for a physical register for each Slave Register. A multiplexor along with a 32-bit register 
suffice in this case. The inputs of the multiplexor will be the corresponding Slave Register signals: slv_reg1, slv_reg2. 

✓ The extra Register is a buffer that stores the output results (when done=1). Digital systems with an iterative behavior 

usually keep the output values until a new input data set is captured, but others do not. Thus, it is always good practice 
to store the output results in a buffer until they are read by the AXI4-Lite interface.  

✓ Input Data: 32 bits (A, B). Slave Register 0 contains A&B. 

✓ Output Data: 33 bits (Q, R, done). Though not necessary, the signal done is included to verify that i) the output data 

was captured when done=1, and ii) the circuit is working (done is being issued). Output data is captured in the buffer 

when done=1. Since the output interface is 32-bits wide, the 33 bits have to be multiplexed into two 32-bit words.  

✓ FSM: It issues a one-cycle pulse for s after a pulse on slv_reg_wren. It then waits for done=1 before returning to S1. This 

means that the software must retrieve output data and verify that done=1 before trying to process a new input data set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
▪ Software routine: It writes one 32-bit word, and then reads two 32-bit words. One of these output words includes the 

signal done. If done=1, the software routine can start a new computation (write a 32-bit word, read two 32-bit words). 

* In most cases, by the time we read data, the circuit has already computed its result, but it is good practice to verify this. 
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▪ AXI4-Lite Interface (alternative – software-controlled): 
✓ Simple interface with 4 Slave Registers (for reading and writing). 

 Slave Register 0: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  00. 

 Slave Register 1: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  01. 

 Slave Register 2: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  10. 

 Slave Register 3: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  11 

✓ Slaves Registers 2 and 3: These are implemented with a multiplexor and a 32-bit register. The inputs of the MUX will be 
the corresponding Slave Register signals: slv_reg2, slv_reg3. 

✓ Input Data: 32 bits (A, B). Slave Register 0 contains A&B. 

✓ Output Data: 33 bits (Q, R, done). The signal done is included to verify that the Q&R is valid, and the circuit is working 

(done asserted). Since we have a 32-bit interface output, the 33 bits have to be multiplexed into two 32-bit words. 

✓ Note: In this interface the connections between the Slave Registers and the Iterative Divider are direct (no extra control). 
This means that data feeding, retrieving, and verification are carried out exclusively by the software routine. 

✓ Output data: Not captured in a buffer when done=1. But it must be kept until the AXI4-Lite interface reads it. It all 

depends on the Iterate Divider I/O mechanism: the circuit keeps its data if the input s is kept at 1, and the data is gone 

when s goes to 0 (so we can start a new computation). The software routine must issue s=1 and s=0 at the proper times. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Software routine: The procedure is slightly more complex that in the previous case: 

✓ Write one 32-bit word (A&B), then another 32-bit word (with s=1). Note that s is being kept at 1. So, we know that the 

output data will be kept until we specifically set s = 0. 

✓ Read two 32-bit words (Q&R, and done). If done=1, output data is valid, and a new computation can be started. 

* By the time we read data, the circuit might have already computed its result, but it is good practice to verify this. 

✓ Before a new computation can be started, set s=0 (i.e., so, write a word on Slave Register 1: 0x00000000) 

✓ Now, we can start a new computation. 
 

TIPS: AXI4-Lite interface files: If you call your interface ‘my_intf’, Vivado 2019.1 creates the following template files: 

▪ <my intf>_v1_0.vhd: top file of the interface. No need to edit unless you plan to include extra I/Os in the interface. 

▪ <my intf>_v1_0_S00.AXI.vhd: This file implements the AXI4-Lite interfacing and includes the Slave Registers. Input registers 

are actual 32-bit registers. Output registers: implemented as a MUX and a 32-bit register. Edit this file by only using the 

Slave Registers that you need and by connecting the Slave registers signals to I/Os in your design (let’s call it ‘my_core’). 

✓ Suggestion: create a file on top of ‘my_core’, called ‘my_core_ip’ where you will include ‘my_core’ and the glue logic 

(e.g.: buffer register, FSM) required to connect ‘my_core’ to the slave register signals. 

✓ Example: AXI4-Lite interface called myaxidiv for Iterative Divider (my_diviter) design. The file hierarchy is as follows: 

myaxidiv_v1_0.vhd: Top file. No need to edit it. 

myaxidiv_v1_0_S00_AXI.vhd: Edit this file: Use only the required slave registers. Instantiate my_diviter_ip and 

connect the 3 slave register signals (slv_reg0, slv_reg1, slv_reg2), and signals slv_reg_wren, resetn, clock. 

my_diviter_ip.vhd: Build this circuit: instantiate my_diviter and include the glue logic (FSM, buffer register).  

my_diviter.vhd: This is your circuit and it includes any other components (.vhd) and ancillary files. 

… (extra files required for mydiviter.vhd) 
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AXI4-LITE: PIPELINED DIVIDER 

▪ Custom Hardware Peripheral: Pipelined Integer Divider (N=16, M=16). 

✓ Operation: The circuit reads input data (16-bit A, 16-bit B) when the E (enable) signal is asserted. After a processing 

delay (N=16 cycles), the result (16-bit Q, 16-bit R) appears and it is signaled by v=1. As this circuit is pipelined, we can 

continuously feed and retrieve data (no need to wait until v=1 to feed a new input data set). This also means that valid 

output data is guaranteed to appear only for one clock cycle. Note that this is how pipelined circuits work. 

 
▪ AXI4-Lite Interface: 

✓ Simple interface with 3 Slave Registers (for reading and writing), a Register, and an FSM. 
 Slave Register 0: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  00. 

 Slave Register 1: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  01. 

 Slave Register 2: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  10 

✓ Extra Register: buffer that stores the output results when v=1. Pipelined circuits update the output when a new input 

data set is captured. Thus, you must store the output results in a buffer until they are read by the AXI4-Lite interface.  

✓ Input Data: 32 bits (A, B). Slave Register 0 contains A&B. 

✓ Output Data: 33 bits (Q, R, v). The signal v is included to verify that i) the output data was captured when v=1, and ii) 

the circuit is working (v was issued). Output data is captured in the buffer when v=1. Since the output interface is 32-

bits wide, the 33 bits have to be multiplexed into two 32-bit words. 

✓ FSM: It issues a one-cycle pulse for E (after a pulse on slv_reg_wren). After S2, we could have gone to S3, where we 

would wait for v=1 before returning to S1. This is a slightly different approach, where this is handled via software: new 

input data can only be fed only when output data (with v=1) has been retrieved. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Software routine: It writes one 32-bit word, and then reads two 32-bit words. One of these output words includes the 

signal v. If v=1, the software routine can start a new computation (write a 32-bit word, read two 32-bit words). 

* In most cases, by the time we read data, the circuit has already computed its result, but it is good practice to verify this. 
 

▪ Pipelined Circuits and AXI4-Lite: The AXI4-Lite interface can only write/read a 32-bit word per bus transaction. As a 

result, we cannot take advantage of the pipelined behavior (E is always a one-cycle pulse). 

If we were to include a FIFO instead of the Register, we could write a chunk of 32-bit words first, then retrieve a chunk of 
output data. But there is no advantage over using a Register as AXI4-Lite does not support writing 32-bit words continuously. 
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▪ AXI4-Lite Interface – Timing Diagram: (we first read from register 2 first to find out done=1, then from register1) 

✓ Pipelined Divider (M=N=16). The results appear 16 cycles after E is asserted. A=0x00BB, B=0x000A (Q=0x0012, R=0x0007). 
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AXI4-LITE: PIPELINED 2D CONVOLUTION KERNEL 

▪ Custom Hardware Peripheral: Pipelined 2D Convolution Kernel (N=3, B=C=8) 

✓ Operation: This circuits captures reads input data (72-bit D) when the E (enable) signal is asserted. After a processing 

delay, the result (20-bit F, v) appears and it is signaled by v=1. As this circuit is pipelined, we can continuously feed and 

retrieve data (no need to wait until v=1 to feed a new input data set).  

✓ Output data is valid only when v=1. v is a delayed version of E. If E is only asserted for one cycle, then when the division 

operation completes, v will only be asserted for one cycle, i.e., data will only be valid for one clock cycle. 

 
▪ AXI4-Lite Interface: 

✓ Simple interface with 4 Slave Registers for reading and writing, a Register, and an FSM. 
 Slave Register 0: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  00. 

 Slave Register 1: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  01. 
 Slave Register 2: Master Writes data on the Slave Peripheral. When this happens, 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟 (3. .2)  =  10. 

 Slave Register 3: Master Reads Data from the Slave Peripheral. 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟 (3. .2)  =  11. 

✓ Extra Register: Buffer that stores the output results (when v=1). Pipelined circuits update the output when a new input 

data set is captured. Thus, the output results must be stored in the buffer until they are read by the AXI4-Lite interface.  

✓ Input Data: 72 bits (D). Slave Register 0, Slave Register 1, Slave Register 2 contain D[71..40], D[39..8], D[7..0] respectively 

✓ Output Data: 21 bits (F, v). The signal v is included to verify that i) the output data was captured when v=1, and ii) the 

circuit is working (v was issued). Output data is captured in the buffer when v=1. As the output interface is 32-bits wide, 

the 21 bits need to be zero-padded to 32 bits.  

✓ FSM: It captures 72 bits (three 32-bit words) on the Slave Registers (it detects 3 pulses of slv_reg_wren). Once the 72 

bits are present on D ready for processing, the FSM issues E=1 for a clock cycle. It then waits for v=1 before returning 

to S1 to start over a new computation. 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Software routine: It writes three 32-bit words, and then reads a 32-bit word. The output word includes the signal v. If 

v=1, the software routine can start a new computation. 

* In most cases, by the time we read data, the circuit has already computed its result, but it is good practice to verify this. 
▪ Pipelined Circuits and AXI4-Lite: The AXI4-Lite interface can only write/read a 32-bit word per bus transaction. As a 

result, we cannot take advantage of the pipelined behavior. 

 

PIPELINED VS. ITERATIVE CIRCUITS 

▪ Bear in mind how their behavior differs (iterative: s and done, pipelined: E and v). In an iterative circuit, we cannot feed 

new data until the previous operation has completed (done=1). In a pipelined circuit, we can feed new data continuously. 

▪ In all the examples shown, we mentioned that it is good practice to include a Register buffer. This is especially required for 
the interfaces for the Pipelined circuits. For the iterative circuits, it is strongly recommended. 

▪ Pipelined circuits: the AXI4-Lite interface cannot feed data continuously. Thus, they are better suited for AXI4-Full interfaces.  
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AXI4-FULL INTERFACE - EXAMPLES 
 

AXI4-FULL: MEMORY (XILINX® TEMPLATE) 
▪ Hardware Peripheral: 64-byte memory (or 16 32-bit word memory). Data Width: 32 bits.  

▪ Address (S_AXI_AWADDR, S_AXI_ARADDR): These signals are different from the latched addresses axi_awaddr, 

axi_araddr in AXI4-Lite. Vivado 2019.1 creates a memory with 64 bytes (by default), hence the 6-bit addresses. 

✓ The memory has 16 32-bit words, In order to point to a 32-bit word, we just use the four MSBs of 
𝑆_𝐴𝑋𝐼_𝐴𝑊𝐴𝐷𝐷𝑅, 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐴𝐷𝐷𝑅. 

▪ The Xilinx template provides the following signals (depicted in the figure below): 
✓ 𝑎𝑥𝑖_𝑎𝑤𝑣_𝑎𝑤𝑟_𝑓𝑙𝑎𝑔: This registered signal marks the presence of a write address valid (i.e., we are ready to write). It is 

asserted when 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑉𝐴𝐿𝐼𝐷 = 1, 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑅𝐸𝐴𝐷𝑌 = 0 (and 𝑎𝑥𝑖_𝑎𝑟𝑣_𝑎𝑟𝑟_𝑓𝑙𝑎𝑔 = 0). It is de-asserted when 
𝑆_𝐴𝑋𝐼_𝑊𝑅𝐸𝐴𝐷𝑌 = 𝑆_𝐴𝑋𝐼_𝑊𝐿𝐴𝑆𝑇 = 1. 

✓ 𝑎𝑥𝑖_𝑎𝑟𝑣_𝑎𝑟𝑟_𝑓𝑙𝑎𝑔: This registered signal marks the presence of a read address valid (i.e., we are ready to read). It is 

asserted as soon as 𝑆_𝐴𝑋𝐼_𝐴𝑅𝑉𝐴𝐿𝐼𝐷 = 1, 𝑆_𝐴𝑋𝐼_𝐴𝑅𝑅𝐸𝐴𝐷𝑌 = 0 (and 𝑎𝑥𝑖_𝑎𝑤𝑣_𝑎𝑤𝑟_𝑓𝑙𝑎𝑔 = 0). It is de-asserted when 

𝑆_𝐴𝑋𝐼_𝑅𝑉𝐴𝐿𝐼𝐷 = 𝑆_𝐴𝑋𝐼_𝑅𝑅𝐸𝐴𝐷𝑌 =  𝑆_𝐴𝑋𝐼_𝑅𝐿𝐴𝑆𝑇 = 1. 
✓ 𝑎𝑥𝑖_𝑎𝑤𝑎𝑑𝑑𝑟, 𝑎𝑥𝑖_𝑎𝑟𝑎𝑑𝑑𝑟: On the Write Address/Read Address 

cycle, these addresses capture the value of 
𝑆_𝐴𝑋𝐼_𝐴𝑊𝐴𝐷𝐷𝑅, 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐴𝐷𝐷𝑅. Burst Transfers: these addresses 

are incremented by the interface following the burst rules set in 
𝑆_𝐴𝑋𝐼_𝐴𝑊𝐵𝑈𝑅𝑆𝑇, 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐵𝑈𝑅𝑆𝑇 (FIXED, INCR, WRAP). 

✓ mem_wren: It indicates that new data is available on 𝑆_𝐴𝑋𝐼_𝑊𝐷𝐴𝑇𝐴. 

✓ mem_rden: It indicates that we are ready to read data from the 

Memory. 𝑚𝑒𝑚_𝑟𝑑𝑒𝑛 = 𝑎𝑥𝑖_𝑎𝑟𝑣_𝑎𝑟𝑟_𝑓𝑙𝑎𝑔. 

 
▪ Reading bursts (according to timing diagram obtained by simulating Vivado template): this particular circuit can only output 

one word every two cycles. 
▪ Burst: This is configured by: i) 𝑆_𝐴𝑋𝐼_𝐴𝑊𝑆𝐼𝑍𝐸 and 𝑆_𝐴𝑋𝐼_𝐴𝑅𝑆𝐼𝑍𝐸 (Data width per burst), ii) 𝑆_𝐴𝑋𝐼_𝐴𝑊𝐵𝑈𝑅𝑆𝑇 and 

𝑆_𝐴𝑋𝐼_𝐴𝑅𝐵𝑈𝑅𝑆𝑇 (Burst type), and iii) 𝑆_𝐴𝑋𝐼_𝐴𝑊𝐿𝐸𝑁 and 𝑆_𝐴𝑋𝐼_𝐴𝑅𝐿𝐸𝑁 (transfers per bursts). 
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AXI4-FULL: XILINX TEMPLATE (MEMORY) WITH PIXEL PROCESSOR  

 

▪ We use the previous 64-byte memory, but we add a pixel processor unit of 32 bits (four LUT 8-to-8). Due to the LUT delay 
most incoming signals to the Write Address and Write Channel (as well as some internal signals) are delayed using a register. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ This approach requires significant modification to work with more complex hardware components that take several cycles to 

compute data. As a result, we modified the memory-based approach and instead we use FIFOs to communicate with the 
AXI4-Full I/O signals. We still keep most of the AXI4-Full interface signals generation though. 
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AXI4-FULL: PIXEL PROCESSOR WITH FIFO INTERFACE 

▪ This design illustrates how to integrate a hardware architecture into the AXI Interface. We use the Pixel Processor as our 

first example, even though it does not require this complex interfacing.  
▪ Components: 

✓ Input FIFO (iFIFO), Output FIFO (oFIFO). The FIFOs are asynchronous. Also, they are configured as First Word Fall 
Through (FWFT), this is by default the first written word always appears on the output. 

✓ FSM @ S_AXI_ACLK, FSM @ AXI_CLKFX. 
▪ Considerations: 

✓ AXI_RVALID: Compared to the Xilinx®-provided template, we modify the generation of 𝑆_𝐴𝑋𝐼_𝑅𝑉𝐴𝐿𝐼𝐷 (and 

𝑆_𝐴𝑋𝐼_𝑅𝑅𝐸𝑆𝑃). Now 𝐴𝑋𝐼_𝑅𝑉𝐴𝐿𝐼𝐷 is asserted when 𝑎𝑥𝑖_𝑎𝑟𝑣_𝑎𝑟𝑟_𝑓𝑙𝑎𝑔 = 1 and when oFIFO is not empty (𝑜𝑒𝑚𝑝𝑡𝑦 = 0). 

✓ In this design, the memory address is ignored. That is, any 6-bit address will allow for writing and reading from the 
FIFOs. You can further customize your peripheral by performing address decoding so that only certain 6-bit addresses 
allow access to the FIFOs. This way you can use the other addresses for control purposes. 

✓ Notice that there is no direct control to tell the software that the iFIFO is full: the AXI Peripheral will behave as if data 
was actually written. So, the user software needs to keep track of how much data is being written to iFIFO. 

✓ When reading, if oFIFO is empty (oempty=1), the signal RVALID is forced to 0. So, the Master will wait until data is 

available in oFIFO. This might lead to software deadlock. A more sophisticated approach might require the software to 
keep track of how much data is present on oFIFO at all times. 

▪ Asynchronous FIFO: This circuit allows us to partition the peripheral into two different clock regions: one controlled by 
S_AXI_ACLK and the other controlled by CLKFX. Asynchronous FIFOs usually require a dual-port RAM memory (to write and 
read at the same time for different addresses) and extra logic to generate the ‘empty’ and ‘full’ signals. 

▪ Dynamic Frequency Control: MMCM (Multi mode Clock Managers) on the Zynq-7000 devices include a dynamic 
reconfiguration port (DRP). This port is a register-based interface that can adjust the frequency and phase at run-time 
without loading a new bitstream on the SoC. This circuitry can be connected to an AXI4-Lite peripheral in order to modify 
CLKFX. If we want to avoid this level of complexity, we can just do CLKFX = S_AXI_ACLK. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Input/Output Example: If we input one 32-bit word, we get one 32-bit output word. 
 

Input Output 

0xDEADBEEF 0xEED2DDF7 

0xBEBEDEAD 0xDDDDEED2 

0xFADEBEAD 0xFDEEDDD2 
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▪ FSM @ S_AXI_ACLK 
✓ This FSM does not need to change if we modify the Pixel Processor by another circuit. 
✓ This FSM controls the outer side of the FIFOs and some AXI signals. 

✓ reset: This active-high signal is generated in order to fulfill the requirements of the FIFOs’ reset. 

 FIFOs must be reset prior to usage for at least 5 read/write clock cycles. If we use 16 cycles @ 100 MHz, the minimum 
clkfx is 16x10ns/5 = 32 ns → 31.25 MHz. For now, we are making S_AXI_ACLK = CLK_FX. 

 𝑓𝑖𝑓𝑜_𝑓𝑠𝑚_𝑟𝑠𝑡: The register is to avoid glitches (this is to avoid simulation problems as FIFO reset has to glitch-free). 

✓ When reading: the FSM (@S_AXI_ACLK) requires that 𝑜𝑒𝑚𝑝𝑡𝑦 = 0 (oFIFO not empty) and that 𝑆_𝐴𝑋𝐼_𝑅𝑉𝐴𝐿𝐼𝐷 = 1 before 
it issues 𝑜𝑟𝑑𝑒𝑛 = 1 (load next data on the output of oFIFO). 

 
▪ FSM @ CLKFX:  

✓ This FSM needs to change if we modify the Pixel Processor by another circuit. Most circuits include a ‘start’ and ‘done’ 
signals (or ‘enable’ and ‘valid’) to be controlled by this FSM. This way, our only job is to implement an interface to the 
FIFOs to load or write the required input or output data. 

✓ This FSM handles: 
 The inner side of the FIFOs. For iFIFO, this is 𝑖𝑒𝑚𝑝𝑡𝑦, 𝑖𝑟𝑑𝑒𝑛; for OFIFO, this is: 𝑜𝑓𝑢𝑙𝑙, 𝑜𝑤𝑟𝑒𝑛. For the Pixel Processor, 

The FSM checks whether iFIFO is not empty and oFIFO is not full. If so, we push out the next iFIFO word (irden = 
1) and we write a word on oFIFO (owren = 1). 

 Control signals to the Pixel Processor (e.g.: start, done, enable, valid signals; they do not exist in this example) 
 Control signals to the interface between the FIFOs and the Pixel Processor input/output data signals. We might require 

extra glue logic between the output of iFIFO and the Pixel Processor input, and between the Pixel Processor output 
and the input of oFIFO. In this case, this is not required, as there are direct connections. 

 
▪ 𝑟𝑒𝑠𝑒𝑡𝑛 signal of the FSM @ CLKFX: We connect it to the active-low AXI bus reset.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
▪ Template: You might use this interface as a template to integrate any hardware architecture into an AXI4-Full peripheral. 

The only part that needs to change is the circuitry running at CLKFX: the hardware architecture and the FSM @ CLKFX. 
However, unlike this Pixel Processor, circuits are usually synchronous (requiring a clock) and/or usually require glue logic 
between the hardware architecture and iFIFO output and oFIFO input. The Pipelined Divider and the Pipelined 2D Convolution 
Kernel show such cases. 
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AXI4-FULL: PIPELINED DIVIDER WITH FIFO INTERFACE 

▪ This design illustrates how to integrate a Pipelined Divider (N=16, M=16) into the AXI4-Full interface. 

▪ Pipelined Divider IP: The figure depicts the I/Os: data signals and the control signals (reset, enable, and valid). 

✓ Inputs: 16-bit data inputs (A, B), and enable input. Outputs: 16-bit data outputs (Q, R) and valid output. 

✓ The pipelined divider captures data (A, B) when E=1. After a processing delay, output (Q, R) appears and it is signaled 

by v=1. As this circuit is pipelined, we can continuously feed and retrieve data. The AXI4-Full Interface can handle this. 

▪ The interface varies slightly from the one for the pixel processor. In addition to the FSM @ CLKFX, the pipelined divider (a 
synchronous circuit) circuit also runs at CLKFX. Finally, the FSM @ CLKFX is different. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ FSM @ S_AXI_ACLK 

✓ This is the same FSM as the one for the Pixel Processor. It generates the active-high signal reset for the FIFOs. 

✓ reset: Note that it is also fed to the FSM @ CLKFX, Pipelined Divider IP. Though we could have used the active-low AXI 

bus reset (S_AXI_ARESETN) for these components, we instead connected them to this active-high reset. This 
configuration will prove very useful if we want to later perform Partial Reconfiguration (Unit 6). 

 
▪ FSM @ CLKFX:  

✓ This FSM handles: 

 The inner side of the FIFOs (iFIFO: iempty, irden, oFIFO: ofull, 

owren). The FSM checks whether iFIFO is not empty and oFIFO is 

not full, before attempting to write data on the Pipelined Divider.  

 Control signals of: i) the Pipelined Divider IP (E, v), and ii) control 

signals of the interface between the FIFOs and the Pipelined Divider 
(not required, as there are direct connections). 

✓ To be able to continuously feed and retrieve data in the Pipelined 
Divider, we need to control the input and output sides simultaneously. 
Thus, we partition the FSM @ CLKFX into: 
 Input FSM: It controls the iFIFO and the input E. It resembles the 

FSM @ CLKFX of the Pixel processor, but it also asserts E=1 (Divider 

grabs data) when there is data on iFIFO and oFIFO is not full. 

 Output FSM: It controls oFIFO and the output v. Note that owren 

only depends on v. Also, we could have owren = v, but just in case 

at power-up we check that v in fact transitions from 0 to 1. 
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AXI4-FULL: PIPELINED 2D CONVOLUTION KERNEL WITH FIFO INTERFACE 

▪ This design illustrates how to integrate a Pipelined 2D Convolution Kernel (N=3, B=C=8) into the AXI4-Full interface. 

▪ Pipelined 2D Convolution Kernel IP: The figure depicts the I/Os: data signals, control signals (reset, enable, and valid). 

✓ Inputs: 72-bit data input (D) and enable input. Outputs: 20-bit data outputs (F) and valid output. 

✓ The pipelined divider captures data (D) when E=1. After a processing delay, output (F) appears and it is signaled by v=1. 

As this circuit is pipelined, we can continuously feed and retrieve data. The AXI4-Full Interface can handle this. 
▪ The interface varies from the one for the pipelined divider. In addition to the FSM @ CLKFX being more complex, we have 

an Input Interface and Output Interface (trivial) between the 2D Conv Kernel and the FIFOs. They all run at CLKFX. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
▪ FSM @ S_AXI_ACLK 

✓ This is the same FSM as the one for the Pixel Processor and Pipelined Divider. It controls the outer side of the FIFOs and 

some AXI signals. It also generates the active-high signal reset for the FIFOs. 

✓ reset: Note that it is also fed to the FSM @ CLKFX and Pipelined 2D Convolution Kernel IP. Though we could have used 

the active-low AXI bus reset (S_AXI_ARESETN) for these components, we instead connected them to this active-high 
reset. This configuration will prove very useful if we want to later perform Partial Reconfiguration (Unit 6). 

 
▪ FSM @ CLKFX:  

✓ This FSM handles: 

 The inner side of the FIFOs (iFIFO: iempty, irden, oFIFO: ofull, owren). It checks whether iFIFO is not empty and oFIFO 

is not full, before attempting to write data on the 2D Convolution Kernel.  

 Control signals of the 2D Conv Kernelr IP (E, v), and the interface between the FIFOs and the 2D Conv. Kernel (Eri). 

✓ To be able to continuously feed and retrieve data in the Pipelined Divider, we need to control the input and output sides 
simultaneously. Thus, we partition the FSM @ CLKFX into: 

 Input FSM: It controls the iFIFO and the input E. It is more complex than that of the Pipelined Divider: it loads 3 32-

bit words, from which 72 bits are fed into the input D. When the 72 bits are ready, it asserts E=1 when there is data 

on iFIFO and oFIFO is not full. 

 Output FSM: It controls oFIFO and the output v. Note that owren only depends on v. Also, we could have owren = v, 

but just in case at power-up we check that v in fact transitions from 0 to 1. 

 
▪ IMPORTANT DIFFERENCE WITH AXI4-LITE: Note that in the ‘pipelined divider’ and ‘pipelined 2D Convolution kernel’, 

we did not include the signal v in the output. Data is written on oFIFO only when v=1, otherwise oFIFO is empty. When we 

request a read, only valid data will be retrieved. This is a powerful feature of the FIFO-based approach for AXI4-Full.  
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TIPS: AXI4-Full interface files: If you call your interface ‘my_intf’, Vivado 2019.1 creates the following template files: 

▪ <my intf>_v1_0.vhd: top file of the interface. No need to edit unless you plan to include extra I/Os in the interface. 

▪ <my intf>_v1_0_S00.AXI.vhd: This file implements most of the AXI4-Full interfacing and includes a 64-byte memory example. 

In our examples, we made some significant modifications: we removed the 64-byte memory and instantiate the files 

myAXI_IP.vhd (wrapper file) and my_AXIfifo.vhd: this file implements the 2 FIFOs so that your hardware design (called 

‘my core’) connects to them; it also slightly modifies AXI_RVALID generation (compared to the original Xilinx template). 

 

✓ Suggestion: If your circuit is called ‘my core’, create a file on top of it, called ‘my_core_ip’ where you will include 

‘my_core’ and the glue logic (e.g.: registers, FSM) required to connect ‘my_core’ to my_AXIfifo.vhd. 

 

✓ Example: AXI4-Full interface called mypipdivfull for Pip. Divider (res_div_pip.vhd) design. The file hierarchy is: 

mypipdivfull_v1_0.vhd: Top file. No need to edit it. 

mypipdivfull_v1_0_S00_AXI.vhd: Edited template without the 64-byte memory example. 

myAXI_IP.vhd: Wrapper file for the circuit that implements the FIFOs and their connections. 

myAXIfifo.vhd: File that implements the FIFOs. It also interfaces with some Write Channel and Read Channel 

signals (AXI_RVALID generation is slightly different). It implements the FSM@S_AXI_ACLK. Here, you 

need to instantiate pipdiv_ip.vhd and connect it to the FIFO I/Os and its control signals (ofull, iempty, 

owren, irden). 

pipdiv_ip.vhd: This is the circuit you need to build. Instantiate res_div_pip and include the glue logic 

(FSM@CLKFX, buffer register) to the FIFOs (inner side and the control signals).  

res_div_pip.vhd: This is your circuit and it includes any other components (.vhd) and ancillary files. 

… (extra files required for res_div_pip.vhd) 

 
 Note: This is the file structure you should follow for any design, i.e., use this Pipelined Divider as a template. All of 

the examples here follow this structure. The only exception is the Pixel Processor where the FSM@CLKFX was included 

in myAXIfifo.vhd (for legacy reasons). 
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GENERAL PROCEDURE FOR INTERFACE DEVELOPMENT (AXI4-LITE, AXI4-FULL) FOR CUSTOM HARDWARE 

▪ Design your hardware architecture, called ‘Core IP’ (e.g. Pipelined Convolution Kernel, iterative CORDIC). 

✓ Perform thorough simulation. 

✓ The I/O mechanism should be clearly specified. For example: s and done for iterative circuits, E and v for pipelined 

circuits. Note that there can be other I/O mechanisms: a more complex variation of the examples shown so far, or very 
different ones. This I/O mechanism is what really matters when designing the AXI interface. 

▪ Design the AXI Peripheral: Build an AXI interface around your ‘Core IP’. 

✓ AXI Peripheral: ‘Core IP’ + the AXI interface around it. Vivado provides template files: 

 AXI4-Lite: The Vivado template is very helpful as it already includes the circuitry to interface to AXI signals, and it 

provides Slave Registers and extra control signals (e.g.: slv_reg_wren, slv_reg_rden) to which your ‘Core IP’ can 

connect to. Your job is to connect your ‘Core IP’ to these Slave Registers and to the extra control signals. 

 AXI4-Full: We made significant modifications to the Vivado template and turned it into a FIFO-based interface. Your 

job is to connect your ‘Core IP’ to two FIFOs (input FIFO: iFIFO, and output FIFO: oFIFO) and their control signals.  

✓ This approach of only ‘interfacing’ the ‘Core IP’ to Slave Register signals (AXI4-Lite) or FIFO signals (AXI4-Full) is well 

recommended as it avoids (for the most part) having to deal with the AXI interface circuitry. Eventually, the AXI bus 
protocol might be updated or replaced. By following this approach, we might keep our design and their interface to Slave 
registers (AXI4-Lite) or FIFOs (AXI4-Full) while only replacing the bus interface circuitry. Several examples shown here 
were initially built for the old PLB Bus; minor changes were made in order to turn the old peripherals into AXI peripherals. 

✓ In some applications, you might need extra features in your AXI Peripheral (required by the ‘Core IP’ or the AXI interface): 

 Connection to external I/Os to the PL (e.g.: switches, leds). You need to route these signals as AXI peripheral I/Os. 
 Generate interrupt signals that connect to the PS. Once you design the hardware interrupts, you need to router these 

interrupt signals as AXI peripheral I/Os that will connect to the PS. 
✓ It is strongly recommended that you create the AXI Peripheral in a separate Vivado project. To get the template files, 

you can Create and Package a New IP in Vivado and retrieve the template files. Or you can get the files from the examples 

shown (AXI4-Full/AXI4-Lite pixel processor, pipelined divider, pipelined 2D convolution kernel) and edit them. 
✓ Perform thorough simulation. When building the peripheral, it is not uncommon to make a design or coding mistake. 

These problems can be found and corrected via proper simulation (in some cases unintended issues might be discovered 
via simulation). Try to emulate (to the best extent) the writes/reads of your software application. 
 To facilitate this process, testbenches are included for the AXI4-Lite and AXI4-Full interfaces of these designs: pixel 

processor, pipelined divider, pipelined 2D Convolution kernel. These testbenches include procedures to: 
− Write/Read on Slave Registers (AXI4-Lite): WRITE_REG(Data, Slave Reg #), READ_REG(Slave Reg #). 

− Write/Read on memory addresses (AXI4-Full): WRITE_DATA(Mem. Address, # of words, Data), READ_DATA (Mem. 

Address, # of words). In our FIFO-based approach, the memory address you write/read from is usually not relevant, 

but it might be in some special circumstances (e.g.: see PL interrupt example later). 
 You can re-use any of these testbenches in your design with minor modifications: 

− Update the name of the testbench. 
− Update the name of the Unit under test (UUT) component declaration and port mapping. 
− Update writes/reads to Slave Registers (AXI4-Lite) or memory positions (AXI4-Full) as needed by your application. 

 
▪ Build the AXI4 Peripheral (Full or Lite) in Vivado. This mechanical procedure packages your peripheral so it is ready to drag 

and drop it in a Block Based Design in Vivado. Refer to Embedded System Design for Zynq PSoC Tutorial → Units 3 and 4. 

✓ If your peripheral includes I/Os, refer to Zynq Book Tutorial → Creating IP in VHDL for step-by-step instructions. 

✓ If your peripheral includes interrupt signals that connect to the PS, refer to Embedded System Design for Zynq PSoC 

Tutorial → Unit 9. 

▪ Create the embedded system (Block Based Design): Drag and drop the Zynq PS and your custom AXI peripheral. Refer to 

Embedded System Design for Zynq PSoC Tutorial → Units 3 and 4 for step-by-step instructions. 

▪ Build software application in SDK. When you open SDK (after building your embedded system in Vivado), software 
drivers will be generated for your custom AXI peripheral (among other drivers for PS/PL peripherals).  

✓ If the name of your peripheral is ‘my_intf’, the software drivers are listed in ‘my_intf.h’. The available functions are 

based on low-level functions that write/read in the memory space (Xil_Out32, Xil_In32): 

 AXI4-Lite functions: MY_INTF_mWriteReg(base address, SlvReg #, 32-bit data), MY_INTF_mReadReg (base address) 

 AXI4-Full functions: MY_INTF_mWriteMemory(base address + offset, 32-bit data), MY_INTF_mReadMemory (base 

address + offset). In our FIFO-based approach, we can write a large chunk of data before we retrieve any results (we 

have up to 512 32-big input and output words). We will see later how to write/read chunks of data in bursts via DMA. 
✓ Our AXI Peripheral has a register-based interface: we write/read onto specific registers (AXI4-Lite) or Memory Addresses 

(AXI4-Full) in order to communicate with our hardware design. 
✓ Note: Each address in a microprocessor addresses a byte. However, each word we write/read is 32 bits. Thus: 

 AXI4-Lite: The Address width of awaddr, araddr is 4 bits if we use 4 Slave Registers (i.e., 4 32-bit words). Thus, 

Register 1 is address 0100, Register 3 is address 1100 (a slave register is viewed as a memory address). 
 AXI4-Full: If we use the 64-byte (or 16 32-bit words) memory template (that was converted in FIFOs), the address 

width of awaddr and araddr is 6 bits. So, we have 16 32-bit memory positions to write/read. 
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AXI4-FULL: 2D-DCT FIFO INTERFACE 

▪ This design illustrates how to integrate a complex system (2D DCT IP) into the AXI4-Full interface. Unlike the previous 

examples, here we intend to design a parametric interface that supports different parameters of the 2D-DCT IP. 
▪ 2D DCT IP: The figure depicts the input and output data signals, and the control signals (reset, enable, and valid), and the 

three most important parameters (N, B, NO). 

✓ Inputs: NN B-bit pixels. Data is fed column-wise (N B-bit pixels at a time). To feed a column, E must be asserted. 

✓ Outputs: NN pixels, each pixel of NO bits. Data is generated row-wise (N NO-bit pixels at a time). When a row is 

ready, v is asserted. The N rows are generated one cycle after another. 

✓ Parameters: N (transform size: 4, 8, 16), B (input pixel bitwidth: 8, 16), NO (output pixel bitwidth: 8, 16). 

 

▪ This interface is quite different than the previous ones as it is parametric (it depends on N, B, NO). The glue logic between 

the 2D-DCT and the FIFOs varies according to the parameters. The 2D-DCT architecture and the glue logic runs at CLKFX. 
Finally, the FSM @ CLKFX is large to handle the complex I/O mechanism. 

 
▪ Glue logic between 2D-DCT and FIFOs: 

✓ Input Interface: Collection of registers that capture data 32 bits at a time. The 2D DCT data input is NNB bits (B=8, 

N=4, 8, 16). We feed one column at a time, i.e., we have N groups of NB bits. 

✓ Output Buffer: The 2D DCT generates N groups of NNO bits in successive cycles. If NNO>32, we cannot place this 

amount of data fast enough on oFIFO. Here, we need a temporal buffer to store this data. 

✓ Output Interface: When NNO>32, a MUX is needed so we can place data on oFIFO 32 bits at a time.  

✓ 𝑁𝑊𝐼𝐶 =
𝑁

⌊32
𝐵⁄ ⌋

. This is the number of 32-bit words per input column 

✓ 𝑁𝑊𝑂𝐶 = 𝑁𝑊𝐼𝐶 × ⌈
𝑁𝑂

𝐵
⌉. This is the number of 32-bit words per output column (or row). 

✓ The following table displays the values of NWIC and NWOC for the supported DCT size (N) and values of B and NO: 

DCT B=8 NO=8 NO=16 

4x4 NWIC=1 NWOC = 1 NWOC = 2 

8x8 NWIC = 2 NWOC = 2 NWOC = 4 

16x16 NWIC = 4 NWOC = 4 NWOC = 8 

 
▪ 𝑟𝑒𝑠𝑒𝑡 signal of the 2D DCT IP and FSM @ CLKFX: Though we can connect it to the active-low AXI bus reset 

(S_AXI_ARESETN), we prefer to connect them to the FIFOs’ reset; this active-high signal is generated by the FSM@ 
S_AXI_ACLK. This configuration will be more helpful if we want to later perform Partial Reconfiguration. 
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▪ Glue Logic examples: The figure depicts the different Input and Output Interfaces to the 2D DCT IP core along with the 

Output buffer (when needed). The particular architecture depends on the parameters N, B, and NO. 

✓ Note that when DCT=4x4 (N=4) and B=NO=8, there is no need for the extra buffer or for any glue logic. In all the other 

cases, we do need an output buffer as the oFIFO is only 32-bits wide. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
▪ FSM @ S_AXI_ACLK 

✓ This is the same FSM as the one for the Pixel Processor.  
 
▪ FSM @ CLKFX:  

✓ This FSM handles: 
 The inner side of the FIFOs. For iFIFO, this is 𝑖𝑒𝑚𝑝𝑡𝑦, 𝑖𝑟𝑑𝑒𝑛; for OFIFO, this is: 𝑜𝑓𝑢𝑙𝑙, 𝑜𝑤𝑟𝑒𝑛. For the 2D DCT IP, 

the FSM checks whether iFIFO is not empty and oFIFO is not full, before attempting to write data on the 2D DCT IP. 
 Control signals to the 2D DCT IP (𝐸, 𝑣). 

 Control signals to the interface between the FIFOs and the 2D DCT input/output data signals: 𝑠, 𝐸𝑟𝑖, 𝐸_𝑏𝑢𝑓. 

✓ To be able to control the input and output sides simultaneously, we partition the FSM @ CLKFX in two parts: 

 Input FSM: It controls the input interface, the input E to the 2D DCT and iFIFO. 

 Output FSM: It controls the output interface, output buffer, oFIFO, and the output v. 

 
✓ Output FSM 

The figure depicts the output interface control and 𝑜𝑤𝑟𝑒𝑛 generation: 

 (a) N=4, B=NO=8: owren=v and no output buffer. This requires no Output FSM. 

 (b) Cases different N=4, B=NO=8: Output buffer and FSM that generates E_buf and owren. 

 (c) Order of output pixels in a 32-bit word (same for input pixels) and on a NON output row. 
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✓ Input FSM 

 To avoid data in the output buffer to be overrun by a new input block, there must be 𝑁 × 𝑁𝑊𝑂𝐶 cycles between the 

v of the last row of an output block and the v of the first row of the next output block. This is satisfied if we wait 

𝑁 × 𝑁𝑊𝑂𝐶 cycles between the assertion of E for the last column of an input block and the assertion of E for the first 

column of the next input block. 
 𝐸𝑟𝑖 generation: The table below shows the value of 𝐸𝑟𝑖 for DCT=8x8 and 16x16. For 4x4, 𝐸𝑟𝑖 is not required. In 

general, the formula is: 𝐸𝑟𝑖 =
2𝑁𝑊𝐼𝐶−1−𝐶

2(𝑑𝑟𝑜𝑝 𝐿𝑆𝐵)
 𝐴𝑁𝐷 𝑖𝑟𝑑𝑒𝑛. 

DCT = 8x8 DCT = 16x16 

C irden Eri C irden Eri 

0 1 1 0 1 100 

1 1 0 1 1 010 

X 0 0 2 1 001 

   3 1 000 

   X 0 000 

 
 There are two variations of the DCT 2D IP core: 

− Fully pipelined case: Selected with the parameter IMPLEMENTATION=fullypip. Assuming no I/O constraints, 

we can feed a new block to the 2D DCT IP core right after the previous one. Note that due to the FIFOs, we must 
wait 𝑁𝑥𝑁𝑊𝑂𝐶 cycles between input blocks. 

− One Transpose case: Selected with the parameter IMPLEMENTATION=onetrans. Assuming no I/O constraints, 

we have to wait N-1 cycles before feeding a new block to the 2D DCT IP core right after the previous one. Note 
that due to the FIFOs, we must wait an extra 𝑁𝑥𝑁𝑊𝑂𝐶 cycles between input blocks. 
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 Fully Pipelined case: The figure depicts the case for 2D DCTs of different sizes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

C=NWOC-1

yes

S1

FSM  @ CLKFX

rst=1

0

1

iempty

S2

DCT 4x4: B=8, NO=8,
NWIC=1, NWOC=1

noiempty=0
& ofull=0

irden1, E1

yes

S1
rst=1

0

1

CN 0

iempty

S3

DCT 4x4: B=8, NO=16
NWIC=1, NWOC=2

noiempty=0
& ofull=0

irden1, E1

yes

no

yes

CN=N-1 CNCN+1

S2

CN0

S4

no
CN=N*NWOC-1 CNCN+1

CN0

yes

S1
rst=1

0

1

C,CN 0

iempty

DCT8x8: B=NO=8
NWIC=NWOC, NWIC>1

noiempty=0
& ofull=0

irden1, CC+1

yes

no

yes

C=NWIC-1 CC+1

S2

C0,E1

S4

no
CN=N*NWOC-1 CNCN+1

CN0

yes

noiempty=0
& ofull=0

irden1

S3

no

yes

CN=N-1 CNCN+1

CN0

yes

S1
rst=1

0

1

C,CN 0

iempty

DCT8x8: B=8,NO=16
NWOC=2NWIC, NWIC>1

noiempty=0
& ofull=0

irden1, CC+1

yes

no

yes

C=NWIC-1 CC+1

S2

CC+1,E1

S5

no
CN=N*NWOC-1 CNCN+1

yes

noiempty=0
& ofull=0

irden1

S3

no

yes

CN=N-1 CNCN+1

CN0

no

yes

CC+1

C0

S4FSM  @ CLKFX

FSM  @ CLKFX

FSM  @ CLKFX

CN0



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-5736: Reconfigurable Computing  Summer I 2022 

 

 

24 Instructor: Daniel Llamocca 

 One Transpose case: The figure depicts the case for 2D DCTs of different sizes: 
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▪ Input/Output Example (N=4, B=8, NO=16): The outputs have been verified (with a MATLAB model) to be correct. For 
the inputs, each 32 bit word is a column (top to bottom). For the output, each two 32-bit words is a row (left to right). 

 
Input (columns) Output (rows) 

0xDEADBEEF 

0xBEBEDEAD 

0xFADEBEAD 

0xCAFEBEDF 

0x8000E92E 

0x14C00D82 

0x18A6E418 

0xDB3E1FB2 

0x0A401E19 

0x1D40236D 

0xF8382A32 

0xDEC9FDE7 

0xCFC7C9C7 

0xCAC4C6C3 

0xC6C3C7C3 

0xBEBDC2BD 

0x80000CF4 

0xFF0003D5 

0x0471045F 

0xFF89FF65 

0x010003CE 

0x0000000B 

0x06D0FFE5 

0x00310020 

 
▪ Template: You can use this interface as a template to integrate any hardware architecture into an AXI4-Full peripheral. 

The only part that needs to change is the circuitry running at CLKFX: the hardware architecture, the FSM @ CLKFX, and the 
glue logic between the FIFOs and the DCT 2D. 

 

DIRECT MEMORY ACCESS (DMA) 
▪ The DMA controller (DMAC) is available inside 

the Processing System (PS). It uses a 64-bit AXI 
master interface to perform DMA transfers 
to/from system memories and PL peripherals. 
The transfers are controlled by the DMA 
instruction execution engine. The DMAC is able 
to move large amounts of data without 
processor intervention, leading to faster data 
transfers. 

▪ The source or destination memory can be 
anywhere in the system (PS or PL).  

▪ The user can configure up to eight DMA 
channels (0-7). Each channel corresponds to a 
thread running on the DMA’s engine processor. 
We can issue commands for up to eight read and up to eight write AXI transactions. 

 
▪ The DMA Controller can generate the following Interrupt Signals to the PS Interrupt Controller: 

Interrupt Name Zynq-7000 SoC – IRQ ID # 

DMA Operation Done Channel 0 46 

DMA Operation Done Channel 1 47 

DMA Operation Done Channel 2 48 

DMA Operation Done Channel 3 49 

DMA Operation Done Channel 4 72 

DMA Operation Done Channel 5 73 

DMA Operation Done Channel 6 74 

DMA Operation Done Channel 7 75 

DMA Abort 45 

 
▪ There are other DMA controllers in the system that are local to the I/O peripherals in the PS. These include: 

✓ GigE controller. 
✓ USB controller. 
✓ SDIO controller: for SD (Secure Digital) memory cards, MMC (MultiMedia Cards). 
✓ DevC (Device Configuration) Interface: for Device Boot and PL Configuration.  

 
▪ For more information, refer to the Xilinx® Zynq-7000 AP SoC Technical Reference Manual (UG585) – Chapter 9. For a list 

of available functions (SDK 2016.2), look into the xdmaps.h file in the bsp: /libsrc/dmaps_v2_1/src. 
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INTERRUPTS 

▪ In embedded systems, an interrupt is a signal that temporarily pauses the processor’s current activities. The processor saves 
its current state and executes an Interrupt Service Routine (ISR) to address the reason for the interrupt. An interrupt can 
come from the following places: 
✓ Hardware: A signal directly connected to the processor. 
✓ Software: A software instruction loaded by the processor. 
✓ Exception: An exception generated by the processor when an error or an exceptional event occurs. 

▪ Interrupts can be either maskable or non-maskable. Maskable interrupts can be safely ignored by setting a particular bit in 
a processor register. Non-maskable interrupts cannot be ignored. Interrupt signals can be edge triggered or level triggered. 

▪ Using interrupts allows the processor to continue processing until an event occurs, at which time the processor can address 
the event. This interrupt-driven approach also enables a faster response time to events than a polled approach, in which a 
program actively samples the status of an external device in a synchronous manner. 

 
ZYNQ-7000 SOC’S INTERRUPT STRUCTURE 
▪ Generic Interrupt Controller (GIC): This is a centralized resource for managing interrupts sent to the CPUs from the PS 

and PL. The controller enables, disables, masks, and prioritize the interrupt sources and sends them to the selected CPU (or 
CPUs) in a programmed manner as the CPU interface accepts the next interrupts. 

▪ All of the interrupt requests (PPI, SGI, and SPI) are assigned a 

unique ID number. The GIC uses the ID number to arbitrate.  
▪ The GIC handles interrupts from the following sources: 

✓ Software-generated Interrupts (SGI): 16 interrupts 
available (for each CPU). They can interrupt one or both of 
the CPUs. The sensitivity types for SGIs are fixed and 
cannot be changed. 

Interrupt Name IRQ ID # Type 

Software 0 0 

Rising edge 

Software 1 1 

Software 2 2 

… … 

Software 15 15 

 
✓ Private peripheral Interrupts (PPI): Each CPU 

connects to a private set of 5 peripheral interrupts. The sensitivity types for PPIs are fixed and cannot be changed. Note 
that the fast interrupt (FIQ) and the interrupt (IRQ) signals from the PL are inverted and then sent to the interrupt 
controller (i.e., they are active High at the PS-PL interface, but Active Low when they reach the GIC). 

Interrupt Name IRQ ID # Type Description 

Global Timer 27 Rising edge  

nFIQ 28 Active Low level Fast interrupt signal from PL 

CPU Private Timer 29 Rising edge  

AWDT{0,1} 30 Rising edge Private watchdog timer for each CPU 

nIRQ 31 Active Low level Interrupt signal from PL 

 
✓ Shared peripheral Interrupts (SPI): 60 interrupts available. These interrupts can come from the I/O peripherals and 

various modules (44), or from the programmable logic (PL) side of the device (16). Note that the PL can also accept 
interrupts coming from the PL. They are shared between the Zynq SoC’s two CPUs. Except for interrupts coming from 
the PL (IRQ #61 through #68 and #84 through #91), all interrupt sensitivity types are fixed and cannot be changed. 
The table below shows the PL interrupts as well as interrupts coming from common I/O peripherals in the PS. 

Source Interrupt Name IRQ ID # Type 

PL 
PL [15..8] 91:84 Rising edge/High Level 

PL [7..0] 68:61 Rising edge/High Level 

DMAC 

DMAC [7..4] 75:72 

High Level DMAC [3..0] 49:46 

DMAC Abort 45 

Timer 
TTC 0 44:42 High Level 

TTC 1 71:69 

IOP 

GPIO 52 

High Level 

USB 0 53 

USB 1 76 

I2C 0 57 

I2C 1 80 

UART 0 59 

UART 1 82 

CPU 0

Software Generated 

Interrupts (SGI)

Shared Peripheral 

Interrupts (SPI)

PS
I/O Peripherals (IOP)

PL

1644

60

Private Peripheral 

Interrupts (PPI)

Private Peripheral 

Interrupts (PPI)

CPU 0
Private

CPU 1
Private

60

5

5

16

each

GIC

CPU 0

CPU 1

CPU 0

CPU 1

CPU 0

CPU 1

IRQ/FIQ

CPU 1
IRQ/FIQ
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▪ For interrupts coming from the PS, each particular peripheral handles the interrupts in their own way (see DMA controller). 
Refer to the documentation and examples available for every controller in SDK (see the /libsrc folder in the bsp). 

▪ For interrupts coming from the PL, we need to create the hardware support and then deal with the software drivers. 
▪ For more information, refer to the Xilinx® Zynq-7000 AP SoC Technical Reference Manual (UG585) – Chapter 7. For a list 

of available functions (SDK 2016.2), look into the xscugic.h file in the bsp. 

 
INTERRUPTS COMING FROM THE PL 
▪ A circuit inside the PL can generate one or more interrupts 

that are then connected to the PS. The interrupts can be 
asserted due to any event that the designer specifies (e.g.: 
arithmetic overflow, result ready). 

▪ Up to 16 Interrupt signals can be connected. 
▪ The interrupt type can be configured via software to either 

High Level or Rising Edge. 
 
 
 
 
 
 
 
 
Case Example: Pixel Processor (PS+PL) 
▪ Here, the Pixel Processor interface generates an interrupt signal 𝑜𝑖𝑛𝑡. The figure depicts the block that generates this signal. 

▪ The 𝑜𝑖𝑛𝑡 signal is asserted when the PS writes a specific word (0𝑥99𝐴𝐴55𝐸𝐸) on address 1101. This allows us to properly 

tests interrupts. Note: even though the interrupt is caused via software, this is not a Software Interrupt. 
▪ This interrupt signal is asserted until the PS detects it. At this point, the ISR needs to de-assert the interrupt signal (so that 

the signal does not continuously interrupt the PS). This is performed by reading from address 1101.  
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